Tetrahedron Letters No.30, pp. 2893-2895, 1967. Pergamon Press Ltd. Printed in Great Britain.

SYNTHESIS OF (±)-ISOLONGIFOLENE R.R. Sobti and Sukh Dev National Chemical Laboratory, Poona, India (Received 5 May 1967)

ISOLONGIFOLENE¹, the acid-catalysed rearranged product of longifolene, has been formulated as I, on the basis of spectral and degradation studies^{2,3,4}. We now report on its total synthesis by an unambiguous route.

(±)-Camphene-1-carboxylic acid⁵ (II, m.p. 109-110°. PMR spectrum⁶: two quaternary methyls, 6H singlet at 67.5 c/s; C=CH₂, two 1H singlets at 281 and 300 c/s) was converted to the corresponding methyl ketone (PMR spectrum: CH₃CO, 3H singlet at 126 c/s; C=CH₂, two 1H singlets at 277 and 281 c/s) in 83% yield by its interaction with excess MeLi. This ketone smoothly condensed with ethyl cyanoacetate in the presence of NH₄OAc⁷ to furnish III (λ_{max}^{EtOH} 236 m⁴, ¢ 13,970. PMR spectrum: vinylic Me, 3H singlet at 136 c/s; C=CH₂, two 1H singlets at 274.5 and 282 c/s) in 60% yield. Conjugate addition of lithium dimethylcopper⁸ to III gave, in 80% yield, a diastereoisomeric mixture of IV, which without separation was hydrolysed by KOH in ethylene glycol to give, in 90% yield, a single product, V (m.p. 87-88°. PMR spectrum: four quaternary methyls, 3H singlets at 60, 65, 71 and 75 c/s; -CH₂COOH, 2H singlet at 150 c/s; C=CH₂, two 1H singlets at 285 and 297 c/s). This acid was converted to its acid chloride (oxalyl chloride), the intranolecular acylation of which proceeded smoothly at -15° , in CS₂ in the presence of SnCl₄, to give in 84% yield the unsaturated ketone (VI), m.p. 54-55.5°, identical (mixed m.p., IR) with the (<u>+</u>)-ketone of structure VI, obtained earlier² as a Na₂Cr₂O₇-AcOH oxidation product of

partially racemised isolongifolene. This unsaturated ketone was thioketalised (BF_3-Et_20) to give a product (PMR spectrum: four quaternary methyls, 3H singlets at 57, 60, 60 and 65 c/s; C=CH-, 1H singlet at 316.5 c/s) which on refluxing (16 hr) with Raney nickel in EtOH yielded a hydrocarbon (62%), which after separation of a trace impurity by chromatography over $AgNO_3-SiO_2$ gel, was identified (GLC, TLC⁹, IR, PMR) as (±)-isolongifolene.

REFERENCES

1	U.R. Nayak and Sukh Dev, Tetrahedron 8, 42 (1960).
2	J.R. Prahlad, R. Ranganathan, U.R. Nayak, T.S. Santhanakrishnan and Sukh Dev, <u>Tetrahedron Letters</u> 417 (1964).
3	T.S. Santhanakrishnan, Ph.D Thesis, Madras University (1965).
4	R.R. Sobti, Ph.D Thesis, Bombay University (1967).
5	J. Houben and E. Pfankuch, Liebig's Ann 483, 271 (1930).
6	All PMR spectra were measured in $10-20\%$ solutions in CCl ₄ on a Varian A-60 spectrometer; the signals are recorded in c/S from tetramethylsilane as internal standard.
7	E.J. Cragoe, C.M. Robb and J.M. Sprague, <u>J. Org. Chem. 15</u> , 381 (1950).
8	H.O. House, W.L. Respess and G.M. Whitesides, <u>J. Org. Chem</u> . <u>31</u> , 3128 (1966).
9	A.S. Gupta and Sukh Dev, J. Chromatog. 12, 189 (1963).